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Abstract We study determinantal point processes arising in random domino tilings
of a double Aztec diamond, a region consisting of two overlapping Aztec diamonds.
At a turning point in a single Aztec diamond where the disordered region touches the
boundary, the natural limiting process is theGUE-minor process. Increasing the size of
a double Aztec diamond while keeping the overlap between the two Aztec diamonds
finite, we obtain a new determinantal point process which we call the tacnode GUE-
minor process. This process can be thought of as two colliding GUE-minor processes.
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As part of the derivation of the particle kernel whose scaling limit naturally gives the
tacnode GUE-minor process, we find the inverse Kasteleynmatrix for the dimermodel
version of the Double Aztec diamond.

Keywords Interlacing ·Random tiling ·Kasteleyn ·Dimer ·Airy process ·Extended
kernels · Random Hermitian ensembles

Mathematics Subject Classification (2010) Primary 60G60 · 60G65 · 35Q53;
Secondary 60G10 · 35Q58

Contents

1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
1.1 Domino tilings of double Aztec diamonds and random surface . . . . . . . . . . . . . . . . 279
1.2 Two determinantal point processes L and K . . . . . . . . . . . . . . . . . . . . . . . . . . 283

1.2.1 The L-process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
1.2.2 The K-process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

1.3 The Tacnode GUE-minor kernel and the main theorem . . . . . . . . . . . . . . . . . . . . 287
2 The kernel for the L-process, via Kasteleyn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

2.1 The L-particle process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
2.2 The Kasteleyn matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

3 The tacnode GUE-minor kernel and its symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 295
4 Interlacing pattern of the L-process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
5 Scaling limit of the L and K-processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
6 Proof of the inverse Kasteleyn formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

6.1 The interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
6.2 The left hand boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
6.3 The bottom boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
6.4 The top boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
6.5 The special point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7 Proof of the formula for the L-kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

1 Introduction and main results

AnAztec diamond of order n consists of all squares of the square lattice whose centers
(x, y) satisfy |x |+ |y| ≤ n for n ∈ N. A domino is a union of two adjacent squares. A
domino tiling of an Aztec diamond, introduced in [8,9], is an arrangement of dominos
such that each square of the Aztec diamond is covered exactly once by a domino.
By assigning a weight to each domino, a domino tiling is picked at random with
probability proportional to the product of the domino weights of the domino tiling.
There are in fact four different types of dominos in a tiling: the dominos can be placed
in two orientations, each of which comes in two different parities. These parities
can be seen by giving the Aztec diamond a checkerboard coloring—for horizontal
dominos, either the left square is black or it is white. Uniformly random tilings of
large Aztec diamonds exhibit striking features—the main one being that these tilings
exhibit a limit shape, described by the Arctic circle theorem [13]: for Aztec diamonds
with high order and with asymptotically high probability there is an inscribed circle
containing a disordered region which contains all four types of dominos while outside

123



www.manaraa.com

Tacnode GUE-minor processes and double Aztec diamonds 277

this circle there are four frozen regions each containing one type of domino arranged in
a regular brick wall pattern; see [10,14,15,23].When the weight a of vertical dominos
is different from the one of horizontal dominos, then the arctic circle gets replaced by
an inscribed arctic ellipse.

In [2], the authors investigate the domino tiling of two overlappingAztec diamonds,
each of size n, with weight 0 < a < 1 for vertical dominos and weight 1 for horizontal
dominos. When the size of the diamonds and the overlap both become very large, in
such away that the two arctic ellipses for the singleAztec diamondsmerely touch, then
a new critical process, the tacnode process, will appear near the point of osculation
(tacnode); it is runwith a time in thedirectionof the common tangent to the ellipses. The
kernel governing the local statistics of the tacnode process is given by a perturbation of
theAiry process kernel by an integral of two functions. It was also shown in [2] that this
tacnode process has some universal character: it coincides with the one found in the
context of two groups of non-intersecting random walks [1] and Brownian motions,
meeting momentarily [11,16]; see also [7].

Another ingredient here is the process given by the successive interlacing eigen-
values of minors of a GUE-matrix: the so-called GUE-minor process. In [17] this
process has arisen in the following model: magnifying the infinitesimal region about
the point of tangency of the arctic ellipses with the edge of a single Aztec diamond for
large n, leads to a determinantal process of interlacing points on the successive lines
through (say) the black squares, parallel to the edge of the diamond. This yields the
GUE-minor process, see also [21].

In the present work, we consider two overlapping Aztec diamonds with an overlap,
which remains finite, when the size of the diamonds tends to infinity. In order to
maintain the osculation of the two inscribed ellipses, the geometry forces the weight
a of the vertical dominos to tend to the weight of the horizontal dominos, say at rate
β
√
2/n. Macroscopically this amounts to two Aztec diamonds with inscribed arctic

circles intersecting infinitesimally. The top figure in Fig. 1 shows a relatively large
simulation of a double Aztec diamond. In view of the comments above, it seems
natural that this process be related to the GUE-minor kernel. Indeed, when n tends to
infinity, looking with a magnifying glass at the infinitesimal overlap of the diamonds
gives rise to a new determinantal point process, with local statistics given by the so-
called tacnode GUE-minor kernel; it is a finite rank perturbation of the GUE-minor
kernel mentioned above; see Theorems 1.4 and 1.5 in Sect. 1.3. The random matrix
theory counterpart of this distribution, as described in [3], involves two GUE-matrices
coupled together via the spectra of principal minors.

In [2], the authors considered successive lines through black squares perpendicular
to the region of overlap with dots in the black square each time the dominos covering
that square is pointing to the right of or above the line (green and red dominos, i.e.,
south and west as in Fig. 5); these are called the K-particles. In this work, we shall
mainly consider successive lines parallel to the region of overlap and put a dot in the
black square each time the dominos covering that square is pointing to the right of or
below that line (green and blue dominos, i.e., south and east as in Fig. 5); these give
the L-particles (Sect. 1.2). Figure 2 shows the K and L-particles for the simulation
drawn in Fig. 1.
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Fig. 1 A simulation of a double Aztec diamond with n = 100 and ρ = 4 with the weight a of vertical
and horizontal tiles equal to 1. Both figures are rotated by π/4 counter-clockwise. The top figure shows the
domino tiling with four colors representing the four types of dominos. The bottom figure shows the level
lines of the height function for the tiling which are defined in Sect. 1.1. The simulation was made using the
generalized domino shuffle [22] (color figure online)

In Theorem 1.1, we deduce the kernel for the L-particles from the one of the K-
particles, by first obtaining in Theorem 2.3 (Sect. 6) the inverse Kasteleyn matrix [18]
for the doubleAztec diamond in terms of theK-kernel and then deduce in Sect. 7 theL-
kernel of the particles from that same inverse Kasteleyn matrix. The inverse Kasteleyn
matrix of a single Aztec diamond had been obtained for a = 1 by [12] and generalized
for all a recently in [5]. A similar extension, that is using the Kasteleyn approach to
go between two particle kernels has been used previously for lozenge tilings [4].

In Proposition 1.3, Sect. 1.2, we study the specific interlacing pattern of the L-
particles. We state in Theorem 1.4, Sect. 1.3 and prove in Sect. 5 that, in the scaling
limit n → ∞, the L-process in the infinitesimal overlap is indeed driven by the
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Fig. 2 The top picture shows the blue and red L-particles for the simulation in Fig. 1. Roughly speaking,
the L-particles represent the green and blue dominos in both Aztec diamonds and are colored either blue or
red depending on their location within the double Aztec diamond, see Sect. 1.2.1 for a complete description.
The bottom picture shows the K-particles for the same simulation in Fig. 1. The K-particles represent the
red and green dominos, see Sect. 1.2.2 for a complete description. Both figures have the same orientation
as Fig. 1 (color figure online)

tacnode GUE-minor kernel. Also, we state in Theorem 1.5, Sect. 1.3 and prove in
Sect. 5 that upon thinning at the rate pn = 1 − 2

√
2/n, the K-process is also driven

by the same tacnode GUE-minor kernel, but with a (somewhat surprising) shift in one
of the discrete parameters.

1.1 Domino tilings of double Aztec diamonds and random surface

Consider two overlapping Aztec diamonds A and B, of equal sizes n and overlap ρ,
with opposite orientations; i.e., the upper-left square for diamond A is black and is
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Fig. 3 Double Aztec diamond with n = 8 and overlap ρ = 4, with the (ξ, η) coordinates with Aztec
diamond A enclosed by the blue dotted line and Aztec diamond B enclosed by the red dotted line. The
overlap contains ρ lines (through black squares) ξ = 2s for n − ρ < s ≤ n (color figure online)

white for diamond B. The size n is the number of squares on the upper-left side and
the amount of overlap ρ counts the number of lines of black squares common to both
diamonds A and B. Let ξ, η be a system of coordinates as indicated in Fig. 3. The
even lines ξ = 2k for 0 ≤ k ≤ 2n − ρ and the odd lines η = 2k − 1 for 1 ≤ k ≤ n
run through black squares. The ρ even lines ξ = 2(n − ρ + 1), . . . , 2n belong to the
overlap of the two diamonds. Dominos can be placed either vertically or horizontally
on the double Aztec diamond. We pick a domino tiling T at random with probability
proportional to av(T ), where v(T ) is the number of vertical dominos in T . We assign
the terms North, South, East and West to each type of domino, as given in Fig. 4.

Define

M := n − ρ + 1 = #

{
white squares of diamond A along the line η = 0,
having an edge in common with the boundary

}
,

and define m such that

M − 1 = n − ρ =
{
2m when n and ρ have same parity
2m − 1 when n and ρ have opposite parity.
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North East South West

Fig. 4 Random tiling of a double Aztec diamond with n = 8 and ρ = 4. The figure on the left shows the
underlying checkerboard structure while the figure on the right shows the same tiling with the level lines.
These are shown explicitly for the four types of dominos in the bottom figure. These level lines are the same
as the DR lattice paths [20]

Throughout the paper we assume, for simplicity, the same parity for n and ρ, so that
n − ρ = 2m.

Together with this arbitrary domino-tiling of the double Aztec diamond A∪ B, one
defines a piecewise-linear random surface, by means of a height function h specified
by the heights, prescribed on the single dominos according to Fig. 5; this height can
be taken to be piecewise-linear on each domino. This height function is different from
the usual one by Cohn et al. [6], but related to it by an affine transformation. Let the
upper-most edge of the double diamond A ∪ B have height h = 0. Then, regardless
of the covering by dominos, the height function along the boundary of the double
diamond will always be as indicated in Fig. 5, with height h = 2n along the lower-
most edge of the double diamond. Away from the boundary the height function will,
of course, depend on the tiling; the associated heights are given in Fig. 5.

The height function h obtained in this way defines the domino tiling in a unique
way, because a white square together with its height specifies in a unique way to which
domino it belongs to: North, South, East and West; the same holds for black squares.

This height function associates thus a piece-wise linear random surface with each
random tiling and two groups of level curves of this random surface corresponding to
the half-integer values:

1

2
,
3

2
,
5

2
, . . . , n − 1

2︸ ︷︷ ︸
A-level curves

, n + 1

2
, . . . , 2n − 1

2︸ ︷︷ ︸
B-level curves

.
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Fig. 5 The level lines including the height function around the boundary. The heights change in the interior
only when crossing a level line. The bottom figure shows the height change for each individual domino

Put theweight a > 0 on vertical dominoes and theweight 1 on horizontal dominoes,
so that the probability of a tiling configuration T can be expressed as

P (domino tiling T ) = a#vertical domino′s inT∑
all possible tilingsT a#vertical domino′s in T

Remember 2m := n − ρ throughout the paper. We will also use the coordinates
indicated in Fig. 6. These are the coordinates, which we will call diamond coordinates,
that were used for the particle processes in [2]. The transformation from diamond
coordinates (z, x) to Kasteleyn coordinates (ξ, η) is given by:

z = η + 1
x = 1

2 (η − ξ + 2m + 1)
⇐⇒ ξ = z − 2x + 2m

η = z − 1
(1.1)
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Fig. 6 Double Aztec diamond with n = 8 and overlap ρ = 4 with the (z, x) coordinates of the Aztec
diamond

1.2 Two determinantal point processes L and K

1.2.1 The L-process

The L process is specified by putting a dot in the middle of the black square when the
line ξ = 2s in (ξ, η)-coordinates for 0 ≤ s ≤ 2n − ρ intersects a level curve. We call
these dots L-particles. See Fig. 7 for an example. More precisely we can put a blue
dot when intersecting A-level curves and a red dot when intersecting B-level curves to
distinguish the dots coming from the two Aztec diamonds; see Fig. 8. In other terms,
put a dot in the black square each time the random surface goes down one unit along
the line ξ = 2s.

We are concerned with the probabilities of the following kinds of events, where
[k, �] is an interval of odd integers along the η-axis (so k and � can be taken odd):

{The line {ξ = 2s} has an η-gap ⊃ [k, �]}
={Interval [k, �] ⊂ {ξ =2s} in η-coordinates contains no dot-particles}
={The random surface is flat along the η-interval [k, �] ⊂ {ξ = 2s}}
={Dominos covering [k, �] ⊂ {ξ =2s} are pointing to the left of
or above the line {ξ =2s}}

={Dominos covering [k, �] ⊂ {ξ =2s} are red or yellow in upper Fig. 7}
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Fig. 7 The top figures show the L particle process using the level lines (on the left) and the dominos on the
right. There is an L particle for every green (south) and blue (east) domino. The bottom figures show theK
particle process. There is a K particle for every green (south) and red (west) domino (color figure online)

Theorem 1.1 The L-particles on the successive lines {ξ = 2s} for 1 ≤ s ≤ 2n − ρ

form a determinantal point process with correlation kernel1

Ln,ρ(ξ1, η1; ξ2, η2) = (1 + a2)L(0)
n (ξ1, η1; ξ2, η2)

− (1 + a2)〈((I − Kn)
−1
≥n−ρ+1

Aξ1,η1)(.), Bξ2,η2(.)〉≥n−ρ+1 .

(1.2)

1 〈 f (.), g(.)〉≥α = ∑∞
α f (k)g(k) is an inner product in �2[α,∞], while A≥α refers to the operator A

restricted to �2[α,∞).
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Fig. 8 The red and blue L particles. The blue L particles correspond to Aztec diamond A while the red
particles correspond to Aztec diamond B see Fig. 3. The numbers represent the total number of particles
on each line ξ = 2s (color figure online)

given by a perturbation of a kernel L(0)
n by an inner-product involving the resolvent of

yet another kernel Kn, all given by formulas (2.2) (Sect. 2.1). This shows that, given
q lines {ξ = 2si } and integers ki , �i , with 0 ≤ ki < �i ≤ n, the gap probability is
expressed as the Fredholm determinant2

P

( q⋂
i=1

{The line {ξ = 2si } has an η-gap ⊃ [ki , �i ]}
)

= det
(
I − [χ[ki ,�i ](ηi )Ln,ρ(2si , ηi ; 2s j , η j )χ[k j ,� j ](η j )

]
1≤i, j≤q

)
,

of the kernel Ln,ρ .

This theorem will be proved in Sect. 2.

1.2.2 The K-process

Now we put instead a blue dot in the middle of the black square when the line z = 2k
in (z, x)-coordinates for 1 ≤ k ≤ n intersects an A-level curve and a red dot when

2 The variables ηi below run through odd values only.
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intersecting a B-level curve; i.e., put a dot each time the random surface goes down
one unit along the line z = 2k; see Fig. 7. These dots define the K-particles. In this
instance, we are concerned with the probabilities of the following kinds of events,
where [k, �] is an interval along the x-axis:

{The line {z = 2r} has an x-gap ⊃ [k, �]}
={The interval [k, �] ⊂ {z=2r} in x-coordinates contains no dot-particles}
={The random surface is flat along the x-interval [k, �] ⊂ {z = 2r}}
={Dominos covering [k, �] ⊂ {z=2r} are pointing to the left or below {z=2r}}
={Dominos covering [k, �] ⊂ {z=2r} are blue or yellow in lower Fig. 7}

Theorem 1.2 ([2]) The K-particles on the successive lines {z = 2r} for 1 ≤ r ≤ n
form a determinantal point process with correlation kernel given by perturbing the
one-Aztec diamond kernel K0

n with an inner-product involving the resolvent of the
kernel Kn, all defined in (2.4) and (2.5):

(−1)x−y
Kn,ρ(2r, x; 2s, y) = K

0
n

(
2r, x; 2s, y)

−
〈
(I − Kn)

−1
≥n−ρ+1

a−y,s(.), b−x,r (.)
〉
≥n−ρ+1

. (1.3)

This shows that given q lines {z = 2ri } and integers ki , �i , with ri − m − n ≤ ki <

�i ≤ ri + m, we have

P

( q⋂
i=1

{the line {z = 2ri } has an x-gap ⊃ [ki , �i ]}
)

= det
(
I − [χ[ki ,�i ](xi )Kn,ρ(2ri , xi ; 2r j , x j )χ[k j ,� j ](x j )

]
1≤i, j≤q

)
.

with a kernel Kn,ρ .

The theorem was proved in [2] where the K-particles were called outlier particles.
The dot particles of the L-process satisfy the following interlacing pattern.

Proposition 1.3 For the L-process, the lines ξ = 2s contain blue dots and red dots,
according to the following interlacing patterns, with varying numbers:

lines ξ = 2s ∈ Diamond # of blue and red dots
0 ≤ s < n − ρ ∈ A n − s blue dots
s = n − ρ ∈ A ρ blue dots

n − ρ < s < n ∈ A ∩ B ρ dots with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n − s blue dots

to the right of

s − n + ρ red dots

for each s
s = n ∈ A ∩ B ρ red dots
n < s ≤ 2n − ρ ∈ B ρ + s − n red dots
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Fig. 9 The interlacing system
of blue and red dots. The ρ + 1
lines, {ξ = 2s} ∈ A ∩ B and
{ξ = 2(n − ρ)} ∈ A, contain ρ

dots. All the other lines contain
more dots. See Proposition 1.3
for more details on the
interlacing (color figure online)

with interlacing of the blue dots and interlacing of the red dots, with regard to the
η-coordinate; in the overlap of the two diamonds, the dots interlace as well, with the
right most dot on the line ξ = 2s being to the right of the right most dot on the line
ξ = 2s + 2; also the left most dot on the line ξ = 2s + 2 is to the left of the left
most dot on the line ξ = 2s. Notice that the overlap contains ρ lines (through black
squares) ξ = 2s with n − ρ < s ≤ n. ��
Figure 9 shows the above proposition schematically for the example tiling in Fig. 4.
The proposition will be proved in Sect. 4.

It is interesting to notice that, passing from the Ln,ρ-process to the Kn,ρ-process,
the dot is maintained in the horizontal dominos, whereas a dot in an East domino gets
replaced by a dot in a West domino; compare the pictures given in Fig. 7.

Recall the Kn,ρ-point process is a process of dots along the lines η = 2k − 1 or
what is the same z = 2k. For the sake of the main theorem below, the point of view
will be switched around: namely, theKn,ρ-process induces a determinantal process of
dots along the lines ξ = 0 up to ξ = 2(2n − ρ), inherited from the dots on the lines
z = 2k. As mentioned, this process can be obtained from the Ln,ρ-process by keeping
the dots belonging to the horizontal domino’s and moving the dots from the vertical
domino’s with a black square below to the vertical ones with a black square above;
see Fig. 7.

1.3 The Tacnode GUE-minor kernel and the main theorem

For the rest of the paper, we denote Γa1,a2,...,am to be a positively oriented contour
containing the points a1, . . . , am . Where convenient, we denote γr to be a positively
oriented contour given by a circle of radius r containing the origin.Wewill also denote
L := 0+ + iR↑; the line L is situated to the right of the contour Γ0.
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The coupledGUE-minor kernel, depending on two parametersβ, ρ, is defined to be:

K
tac
β,ρ(u1, y1; u2, y2) = K

minor(u1, β − y1; u2, β − y2)

+ 2
〈
(I − Kβ)−1≥−ρ Aβ,y1−β

u1 (.),Bβ,y2−β
u2 (.)

〉
≥−ρ

(1.4)

whereKminor(n, x; n′, x ′) is the GUE-minor kernel, defined for n, n′ ∈ Z, rather than
N. In the above equation, the subscript≥ −ρ refers to the space �2(−ρ, . . . ,∞). This
kernelwill appear belowas the appropriate scaling limit of theL-particle kernel.Define

K
minor(n, x; n′, x ′) := −In>n′2n−n′

H
n−n′

(x − x ′)

+ 2

(2π i)2

∫
Γ0

dz
∫
L

dw

w − z

e−z2+2zx

e−w2+2wx ′
wn′

zn
,

with Hm(z) defined for m ≥ 1 as

H
m(z) := zm−1

(m−1)! Iz≥0.

The kernel defined in Eq. (1.4) contains the functions:

Kβ(λ, κ) :=
∫
Γ0

dζ

(2π i)2

∫
L

dω

ω − ζ

e−2ζ 2+4βζ

e−2ω2+4βω

ζ κ

ωλ+1

Aβ,y
v (κ) :=

∫
Γ0

dζ

(2π i)2

∫
L

dω

ζ −ω

e−ζ 2−2yζ

e−2ω2+4βω

ζ−v

ωκ+1

∫
L

dζ

2π i

eζ 2−2ζ(y+2β)

ζ v+κ+1 (1.5)

Bβ,y
u (λ) :=

∫
Γ0

dζ

(2π i)2

∫
L

dω

ζ −ω

e−2ζ 2+4ζβ

e−ω2−2ωy

ζ λ

ω−u
+
∫
Γ0

dω

2π i

ωu+λ

eω2−2ω(y+2β)
.

To be precise in the limit theorems we should replace Iz≥0 by Iz>0 + 1
2 Iz=0 in

the case of the L-process, (1.7) in Theorem 1.4 below, and by Iz>0 in the case of the
K-process, (1.9) in Theorem 1.5 below. Since these changes do not affect the limiting
point process we will ignore this fine point. Some properties of the kernel are given in
Sect. 3. Notice that the scaling in the theorems below could have been derived from
the scaling used in the limit of theK-kernel to the tacnode process, combined with the
way the weight a → 1.

The main statement of the paper reads as follows.

Theorem 1.4 Let the size of the Aztec diamonds be equal to n. Suppose that when n
tends to infinity, the overlap ρ = n−2m is finite and the a, the weight of each vertical
domino, tends 1 in the following way:

a = 1 − β√
n/2

, with β ∈ R fixed.
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The coordinates (ξ, η) are scaled as follows,

ξi = 2(n − ui ), ηi = 2t + 2[yi
√
t] − 1, with ui ∈ Z , yi ∈ R. (1.6)

where we set t = [n/2]. With this scaling, the following limit holds:

lim
n→∞ (−a)(η1−η2)/2(−√

t)(ξ1−ξ2)/2Ln,ρ(ξ1, η1; ξ2, η2)
√
t=K

tac
β,ρ(u1, y1; u2, y2).

(1.7)

We also have that the rescaled L-particle process converges weakly to the determi-
nantal point process given by the tacnode GUE-minor kernel.

In the above theorem, note that ξi is always even and ηi always odd. When we go
from ηi to yi we first go from the odd integers to the standard integers to get [yi√t]
and then rescale by

√
t to go to continuous coordinates yi in the limit. This explains

why the correlation kernel is rescaled by just
√
t .

Remember the remark at the end of Sect. 1.2. The K-process induces a process of
particles along the consecutive lines {ξ = 2s}. This is to say the roles of 2r and x in
the kernel Kn,ρ get reversed from the point of view of scaling: the variable 2r turns
into the continuous variable y and the variables x into the discrete variable u. The
simulations of lower-Fig. 2 show that the lines {ξ = 2s} passing through the overlap
A∩ B contain long dense stretches ofK-particles. But performing a random thinning,
one nevertheless is led in the limit to a point process kernel, which turns out to be the
same tacnode GUE-minor kernel, except for some shift.

We do not have a transparent explanation of why we get the same limiting ker-
nel. However, a few extra-words here might help. The dots on the south-dominos
(green dominos as in Fig. 5) are L-particles, as well as K-particles, whereas the L-
particles belonging to east-dominos (blue) get replaced by K-particles belonging to
west-dominos (red), showing duality between east and west dominos. Because of the
thinning, south dominos become rare and play no role in theK-process. This provides
some explanation why, in appropriate limits, both processes lead to the same statistics;
the shift by 1 in the u2-coordinate remains mysterious. This is the content of the next
theorem.

Theorem 1.5 Let a, n and ρ be as in the previous theorem and consider the same
scaling as above, but expressed in the (x, z)-coordinates, using the map (1.1),

2xi = −ρ + 2ui + 2[yi
√
t], 2ri = 2t + 2[yi

√
t]. (1.8)

Let the K-particles be thinned out at the rate pn = 1 − 2/
√
t . We then have the

following limit:

lim
n→∞(1 − pn)a

r2−r1(
√
t)x1−x2−r1+r2(−1)x1−x2Kn,ρ(2r1, x1; 2r2, x2)

√
t

= K
tac
β,ρ(u2 + 1, y2; u1, y1). (1.9)

Interpreted as aweak limit of a point process thismeans that if we thin theK-process by
removing each K-particle independently with probability pn, then the resulting point
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process converges weakly to a determinantal point process given by the correlation
kernel on the right hand side of (1.9).

Notice the kernel Ktac
β,ρ is the same as the one in Theorem 1.4, except for the shift in

u2 and the flip u1 ↔ u2 and y1 ↔ y2.
We now explain our results using the relatively large simultations introduced earlier

in the paper. The geometry of the level curves for the double Aztec diamond, when
n → ∞, looks as in Fig. 1. TheK and L particle processes have also been plotted for
this simulation and is found in Fig. 2. As n → ∞, the particles take continuous values
on each line; they are constrained by the same interlacing as in Proposition 1.3.

2 The kernel for the L-process, via Kasteleyn

2.1 The L-particle process

The kernel Ln,ρ for the L-process is given by Eq. (1.2), i.e.,

Ln,ρ(ξ1, η1; ξ2, η2) = (1 + a2)L(0)
n (ξ1, η1; ξ2, η2)

− (1 + a2)〈((I − Kn)
−1
≥n−ρ+1

Aξ1,η1)(.), Bξ2,η2(.)〉≥n−ρ+1 ,

(2.1)

with

L
(0)
n (ξ1, η1; ξ2, η2) := −I(ξ1<ξ2)

∫
Γ0,a

dw

2π i

(1 + aw)(η1−η2)/2−1

(w − a)(η1−η2)/2+1
w

ξ1−ξ2
2

+
∫

Γ0,a

dz

(2π i)2

∫
Γ0,a,z

dw

w − z

(1 + az)(η1−1)/2(z − a)n−(η1+1)/2wn−ξ2/2

(1 + aw)(η2+1)/2(w − a)n−(η2−1)/2zn−ξ1/2

Kn( j, k) = (−1) j+k

(2π i)2

∫
Γ0,a

dw

∫
Γ0,a,w

dz

z−w

zn− j (1 + aw)n(w − a)n+1

wn+1−k(1 + az)n(z − a)n+1 ,

Aξ1,η1(k) = (−1)k

(2π i)2

∫
Γ0,a

dz
∫

Γ0,a,z

dw

w−z

(1 + az)(η1−1)/2(z − a)n−(η1+1)/2wn−k

(1 + aw)n(w − a)n+1zn−ξ1/2

− (−1)k

2π i

∫
Γ0,a

wξ1/2−k

(1 + aw)n−(η1−1)/2(w − a)(η1+3)/2
dw

Bξ2,η2(k) = (−1)k

(2π i)2

∫
Γ0,a

dw

∫
Γ0,a,w

dz

w−z

(1 + aw)n(w − a)n+1zn−ξ2/2

(1 + az)(η2+1)/2(z − a)n−(η2−1)/2wn+1−k

+ (−1)k

2π i

∫
Γ0,a

(1 + az)n−(η2+1)/2(z − a)(η2+1)/2zk−1−ξ2/2 dz (2.2)
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As was shown in [2] theK-particles form a determinantal point process and the kernel
Kn,ρ for the K-process is given in (z, x) coordinates by

(−1)x−y
Kn,ρ(2r, x; 2s, y)=K

0
n

(
2r, x; 2s, y)

−
〈
(I − Kn)

−1
≥n−ρ+1

a−y,2s(.), b−x,2r (.)
〉
≥n−ρ+1

, (2.3)

where Kn( j, k) is defined as before in (2.2) and where

K
0
n

(
2r, x; 2s, y) = K

OneAzt
n+1

(
2(n − r + 1),m − x + 1; 2(n − s + 1),m − y + 1

)
= −Is<r (−1)x−yψ2r,2s(x, y) + S(2r, x; 2s, y) (2.4)

ax,2s+ε1 (k) := (−1)k−x

(2π i)2

∫
Γ0,a

du
∫

Γ0,a,u

dv

u − v

vx+m

uk+1

(1 + av)s(1 − a
v
)n−s+1−ε1

(1 + au)n(1 − a
u )n+1

= (−1)k−x

(2π i)2

∫
Γ0,a

dv

∫
Γ0,a,v

du

u − v

vx+m

uk+1

(1 + av)s(1 − a
v
)n−s+1−ε1

(1 + au)n(1 − a
u )n+1

− (−1)k−x

2π i

∫
Γ0,a

dv
vx+m−k−1

(1 + av)n−s(1 − a
v
)s+ε1

by,2r+ε2 (�) := (−1)�−y

(2π i)2

∫
Γ0,a

du
∫

Γ0,a,u

dv

v − u

v�

uy+m+1

(1 + av)n(1 − a
v
)n+1

(1 + au)r (1 − a
u )n−r+1−ε2

= (−1)l−y

(2π i)2

∫
Γ0,a

dv

∫
Γ0,a,v

du

v − u

vl

uy+m+1

(1 + av)n(1 − a
v
)n+1

(1 + au)r (1 − a
u )n−r+1−ε2

+ (−1)l−y

2π i

∫
Γ0,a

dv
(1 + av)n−r (1 − a

v
)r+ε2

vy+m−l+1 (2.5)

S(2r + ε1, x; 2s + ε2, y) := (−1)x−y

(2π i)2

∫
Γ0,a

du
∫

Γ0,a,u

dv

v − u

vx−m−1

uy−m

(1 + au)s(1 − a
u )n−s+1−ε2

(1 + av)r (1 − a
v
)n−r+1−ε1

ψ2r+ε1,2s+ε2 (x, y) :=
∫

Γ0,a

dz

2π i z
zx−y (1 + az)s−r

(1 − a
z )s−r+ε2−ε1

.

A single Aztec diamond of size n leads to a determinantal process as well (see
[15]), for which the kernel is given by the following expression:

K
OneAzt
n (2r, x; 2s, y) = (−1)x−y

(2π i)2

∫
γr3

du
∫
γr2

dv

v−u

v−x

u1−y

(1 + au)n−s(1 − a
u )s

(1 + av)n−r (1 − a
v
)r

− Is>rψ2r,2s(x, y).

It is not immediate to go from knowing the kernel for the K-particle process to the
kernel for the L-particles process. To do so we will use the fact that we can get the
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inverse Kasteleyn matrix for the dimer version of Double Aztec diamond. The inverse
Kasteleyn matrix will be explained in terms of the kernel Kn,ρ . Using the inverse
Kasteleyn matrix it is possible to show that the L-particles form a determinantal point
process and compute the kernel.

2.2 The Kasteleyn matrix

Suppose thatG = (V, E) is a bipartite graph. A dimer is an edge and a dimer covering
is a subset of edges such that each vertex is incident to only one edge. The dual of the
double Aztec diamond is a subset of the square grid graph with a certain boundary
condition while a domino tiling of the double Aztec diamond is a dimer covering
of its dual graph. Kasteleyn, in [18], introduced a matrix, later named the Kasteleyn
matrix which one can use to compute the number of domino tilings of the graph. Since
the graph in this paper is bipartite, the Kasteleyn matrix is a type of signed weighted
(possibly complex entries) adjacency matrix with rows indexed by the black vertices
and columns indexed by the white vertices. The sign of the entries is chosen so that
the product of the entries of the Kasteleyn matrix for edges surrounding each face
is negative. This is called the Kasteleyn orientation. We will describe the Kasteleyn
matrix for the double Aztec diamond below but first we state Kasteleyn’s theorem for
bipartite graphs and Kenyon’s formula [19].

Suppose that K denotes the Kasteleyn matrix for a finite bipartite graph G.

Theorem 2.1 ([18])The number of weighted dimer coverings of G is equal to | det K |.
Suppose that E = {ei }ni=1 are a collection of distinct edges with ei = (bi , wi ), where
bi and wi denote black and white vertices.

Theorem 2.2 ([19]) The dimers form a determinantal point process on the edges of
G with correlation kernel given by

L(ei , e j ) = K (bi , wi )K
−1(wi , b j )

where K (b, w) = Kbw and K−1(w, b) = (K−1)wb

The above theorem means that by knowing the inverse of the Kasteleyn matrix,
which we call the inverse Kasteleyn matrix, we can derive the correlation kernel of the
dominos. We can now introduce the Kasteleyn matrix of the double Aztec diamond.

Let

W = {(x1, x2) : x1 ∈ 2Z + 1, x2 ∈ 2Z}

denote the set of white vertices and let

B = {(x1, x2) : x1 ∈ 2Z, x2 ∈ 2Z + 1}

123



www.manaraa.com

Tacnode GUE-minor processes and double Aztec diamonds 293

1

3

5

2 n 1

1

3

4 m 1

2 n 2 m 1

(1, 0)

(0, 1)

(2, 1)

(0, 3) (1, 4)

(2, 3)

−1

−1

−ai −ai

1

1

ai ai

ξ

Fig. 10 The left hand figure shows the dual graph of the double Aztec diamond with n = 8 and m = 4
in the (ξ, η) co-ordinates. The right hand figure shows the weights, Kasteleyn orientation, black and white
vertices for the two most left squares, with (ξ, η)-coordinates

denote the set of black vertices. The dual graph of the double Aztec diamond written
in (ξ, η) co-ordinates has white vertices given by

WAD =
{
(x1, x2) ∈ W : 1 ≤ x1 ≤ 2(2m + n) + 1, 0 ≤ x2 ≤ 2(n − 1)

or 1 ≤ x1 ≤ 2n − 1, x2 = 2n

}

and has black vertices given by

BAD =
{
(x1, x2) ∈ B : 0 ≤ x1 ≤ 2(2m + n), 1 ≤ x2 ≤ 2n − 1

or 2(2m + 1) ≤ x1 ≤ 2(2m + n), x2 = −1

}
.

We denote by An,m to be vertex set of the dual graph of the double Aztec diamond
with (ξ, η) co-ordinates. Figure 10 shows the dual graph of the double Aztec diamond
with n = 8 and m = 4.
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Let Ka denote the Kasteleyn matrix for the double Aztec diamond with entries

Ka(b,w) =
⎧⎨
⎩

(−1)−(b1+b2+1)/2α(r) if w = b + er
(−1)−(b1+b2−1)/2α(r) if w = b − er
0 otherwise

(2.6)

with e1 = (1, 1), e2 = (−1, 1),b = (b1, b2) ∈ B, r = 1, 2,α(1) = 1 andα(2) = −ai.
The choice of sign for the entries of the matrix is the same as [5]. These are chosen
so that entries of the inverse Kasteleyn matrix are discrete analytic functions when
a = 1.

Theorem 2.3 The entries of inverse Kasteleyn matrix for the double Aztec diamond,
Ka, defined by (2.6) are given by

K−1
a (w,b) = −(−1)(w1−w2+b1−b2+2)/4

Kn,ρ

×
(
b2+1,

b2 − b1 + 2m + 1

2
;w2+1,

w2 − w1 + 2m + 1

2

)
, (2.7)

where as before n − ρ = 2m.

In other words, using (1.1), (x, z) ↔ (ξ, η),

K−1
a (w,b) = −(−1)(w1−w2+b1−b2+2)/4

Kn,ρ (z(b), x(b); z(w), x(b))

so essentially the two kernels are the transpose of each other modulo the co-ordinate
transformation (1.1).

The proof of this theorem involves the characterization of K−1
a : Ka .K−1

a = I and
is given in Sect. 6. In order to find such a formula for K−1

a we used a guess following
the approach in [5]. More explicitly, using the K particle correlation kernel one can
compute the joint probabilities of K-particles. As these particles correspond t o east
and south dominos, this joint probability should be equal to a corresponding formula
written in terms of the inverse Kasteleyn matrix by using Theorem 2.2. These two
sides can be compared which gives a guess for the inverse Kasteleyn matrix in terms
of the K particle correlation kernel and leads to the formula in the theorem.

Since we now have the inverse Kasteleyn matrix we can use Theorem 2.2 to prove
Theorem 1.1. The basic observation is that we have an L-particle at a black vertex b
if and only if a dimer covers the edge (b, b + e1) or the edge (b, b − e2). By using
Theorem 2.3 we can compute the probability of seeing L-particles at given black
vertices b1, . . . , b� by summing over all the possibilities for the dimers and using
Theorem 2.2 and thus deduce the L kernel, see Sect. 7 for the details.

For general weights and boundary conditions of the square grid, if we define a point
process on the black vertices such that a particle is present at a black vertex iff a dimer is
incident to that black vertex, fromTheorem 2.2, we can recover the particle correlation
kernel provided we know the inverse Kasteleyn matrix of the model. In general, the
reverse, i.e. to go from the particle correlation kernel to the inverse Kasteleynmatrix, is
quite complicated.However, for the doubleAztec diamond,wewere able to express the
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inverse Kasteleyn matrix in terms of theK-kernel. There should also be an analogous
formula for the inverse Kasteleyn matrix in terms of the L-kernel. This formula could
then be used to give the K-kernel in terms of the L-kernel.

3 The tacnode GUE-minor kernel and its symmetry

Recall from (1.4) the tacnode GUE-Minor kernel, about which we show the following.

Proposition 3.1 The kernel Ktac
β,ρ(u1, y1; u2, y2) is invariant under the involution

u1 ↔ ρ − u2, y1 ↔ −y2, (3.1)

and is a finite rank perturbation of the GUE-minor kernel, as follows3:

K
tac
β,ρ(u1, y1; u2, y2)
(∗)= K

minor(u1, β − y1; u2, β − y2)

+2
max(ρ−1,ρ−1−u2)∑

λ=0

((
I−Kβ(λ − ρ, κ − ρ)

)−1Aβ,y1−β
u1 (κ − ρ)

)
Bβ,y2−β
u2 (λ−ρ)

(∗∗)= K
minor(ρ − u2, β + y2; ρ − u1, β + y1)

+ 2
max(ρ−1,u1−1)∑

λ=0

(
(I − Kβ(λ − ρ, κ − ρ))−1Aβ,−y2−β

ρ−u2 (κ − ρ)
)
Bβ,−y1−β

ρ−u1 (λ − ρ)

(3.2)

��
Remark 3.2 This symmetry (3.1) is not surprising, since it corresponds to the sym-
metry of the geometry of the double Aztec diamond.

Proof In order to prove this statement we need the following functions,

G(λ) =
∫
L

dω

2π i
e2ω

2−4βωω−λ−2, gy(k) =
∫
L

dω

2π i
eω2−2(β−y)ωω−k−1

H(κ) =
∫
Γ0

dζ

2π iζ−κ
e−2ζ 2+4βζ , hy(λ) =

∫
Γ0

dζ

2π iζ−λ
e−ζ 2+2(β−y)ζ ,

and the corresponding operators

G(κ, α) f (α) :=
∑
α≥0

G(κ − ρ + α) f (α)

H(λ, α) f (α) :=
∑
α≥0

H(λ − ρ + α) f (α).

3 The inverse
(
I − Kβ(λ − ρ, κ − ρ)

)−1 is taken in the variables λ, κ ∈ {0, 1, 2, . . .}.
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The kernel Kβ and its resolvent, and the functions Aβ,y
v (κ) and Bβ,y

u (λ) as in (1.6)
can then be expressed as follows,

Kβ(λ, κ) =
∑
α≥0

G(λ + α) H(α + κ), Kρ(λ, κ) := Kβ(λ − ρ, κ − ρ),

Kρ = GH, K�
ρ = HG, with G� = G , H� = H,

I + R(λ, κ) := (I − Kρ(λ, κ))−1 =
∑
α≥0

Kα
ρ (3.3)

Aβ,y1−β
u1 (κ − ρ) = g−y1(κ − ρ + u1) −

∑
α≥0

G(κ − ρ + α)hy1(α − u1)

= g−y1(κ − ρ + u1) − G(κ, ·)hy1(· − u1)

Bβ,y2−β
u2 (λ − ρ) = h−y2(λ − ρ + u2) −

∑
α≥0

H(λ − ρ + α)gy2(α − u2)

= h−y2(λ − ρ + u2) − H(λ, ·)gy2(· − u2)

Using the definition (1.4) of the kernel and the expressions (3.4), we have the following
identities:

1

2
K

tac
β,ρ(u1, β − y1; u2, β − y2)

= −Iu1>u22
u1−u2−1

H
u1−u2(y2 − y1) +

∑
α≥0

gy2(α − u2)hy1(α − u1)

+
〈
(I + R(λ, κ))g−y1(κ − ρ + u1), h−y2(λ − ρ + u2)

〉
≥0

+
〈
H(λ, α)gy2(α − u2), (I + R(λ, κ))G(κ, α)hy1(α − u1)

〉
≥0

−
〈
(I + R(λ, κ))g−y1(κ − ρ + u1), H(λ, α)gy2(α − u2)

〉
≥0

−
〈
(I + R(λ, κ))G(κ, α)hy1(α − u1), h−y2(λ − ρ + u2)

〉
≥0

= −Iu1>u22
u1−u2−1

H
u1−u2(y2 − y1)

+
〈
g−y1(κ − ρ + u1), (I + R�(λ, κ))h−y2(λ − ρ + u2)

〉
κ≥0

+
〈
gy2(α − u2), (I + HT (I + R)G)hy1(α

′ − u1)
〉
α≥0

−
〈
H�(I + R)g−y1(κ − ρ + u1), gy2(α − u2)

〉
α≥0

−
〈
(I + R)Ghy1(α − u1), h−y2(λ − ρ + u2)

〉
λ≥0

. (3.4)

Given the involution (3.1), all terms in the last expression (3.4) are self-dual, except
that the second and third terms interchange, because of the operator identity (see (3.4))

I + H�(I + R)G = I + H(I + R)G = I + R�
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and the self-adjointness of H�(I + R) and (I + R)G.
To prove the second statement (3.2) on finite perturbation, one notices from (1.6)

that the double integral inBβ,y
u (λ) equals 0 for λ ≥ 0, since the integrand as a function

of ζ has no pole at 0 and, similarly the single integral equals 0 for u + λ ≥ 0. Thus
Bβ,y2−β
u2 (λ − ρ) = 0 for λ ≥ ρ and for λ ≥ ρ − u2. This proves from (1.4), the first

equality
(∗)= . The second equality

(∗∗)= is obtained by the involution (3.1). ��

4 Interlacing pattern of the L-process

In this section we prove the interlacing properties as explained in Proposition 1.3. We
first need the following Lemma (remember ρ = n − 2m).

Lemma 4.1 The total number of dots along the line ξ = 2i equals the difference of
height �h between the extreme points of that line, as is given by the boundary values
of the height function: 4

lines ξ = 2i hleft hright Δh # of blue and red dots
0 ≤ i ≤ n − ρ n i n − i n − i blue dots

n − ρ < i < n ρ + i i ρ

⎧⎨
⎩

ρ + i − n red dots
to the left of
n − i blue dots

n ≤ i ≤ 2n − ρ ρ + i n ρ+i−n ρ + i − n red dots

Proof The statement on the first row in the table above follows from the fact that the
height h along the lines ξ = 2i for 0 ≤ i ≤ n − ρ decreases from hleft = n to
hright = i for 0 ≤ i ≤ n − ρ (going from left to right) and from the fact that each
decrease of height by 1 produces a dot. The same statement holds for the range on the
third line of the table by the obvious symmetry consisting of flipping the figure about
the middle of the ξ -axis and the middle of the η-axis. Also note that the heights of
the B-level curves range over the half-integers from n + 1/2 to 2n − 1/2. Therefore
the lines ξ = 2i for 0 ≤ i ≤ n − ρ, which have height at most n, will never intersect
those lower-level lines and vice-versa, showing that on the first line (resp. last line) of
the table above only blue (red resp.) dots appear.

In the overlap region of the twodiamonds, the boundary values of the height function
show that hleft, hright and Δh = hleft − hright is as indicated in the table. Moreover,
since the height of the B-level curves is≥ n+1/2 and the height of the A-level curves
is≤ n−1/2, the red dots are all to the left of the blue dots along the lines ξ = 2(n−ρ)

up to 2n, with numbers as indicated in the table. ��
Lemma 4.2 Let the lines ξ = 2k and ξ = 2k + 2 for 0 ≤ k ≤ n − 1 have � − 1 dots
starting from the right boundary. Then the �th dot on the line ξ = 2k + 2 must be to
the left of or coincide with the �th dot on the line ξ = 2k.

4 A dot-particle x is to the right of a dot-particle y means η(x) ≥ η(y).
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Fig. 11 Assume the �th dot on
the line ξ = 2k + 2 (counted
from the right) appears in A′,
and assume no dot in the square
A, then the height of A must be
as indicated

A′

A

k + � + 1

k + �
k + �

k + �

k + 1

k

� dots

Proof Note that the right most point of the double Aztec diamond on the line ξ = 2i
has height i , provided 0 ≤ i ≤ n. Therefore, if there are � dots on the line ξ = 2k+2,
counting from the right hand boundary, then the left-lower vertex of the square A′,
containing the �th dot, has height k + � + 1; see Fig. 11. Consider two cases:

(i) Assuming no dot in the corresponding square A on the line ξ = 2k, then the only
way to cover the squares A and A′ with domino’s such that A′ carries a dot and
not A, is given by the four upper configurations of Fig. 12; putting in the heights
forces the height of the left-lower and right-upper vertices of the square A to be
k + � as indicated in Fig. 11. This shows there must be � dots on the line ξ = 2k
strictly to the right of the square A. So, the �th dot on the line ξ = 2k + 2 must
strictly be to the left of the �th dot on the line ξ = 2k, at least if A contains no dot.

(ii) Assume a dot in A on the line ξ = 2k; the only way for this to occur is given by
the four lower configurations of Fig. 12. From them one deduces that, if the height
of the lower-left corner of A′ is k + � + 1, then the height of the lower-left corner
of A must be k + � or k + � + 1. In the former case (i.e., k + �), the dots in A
and A′ are the �th ones from the right, proving the claim; in the latter case (i.e.,
k + � + 1), the dot in A is the � + 1st one and the dot in A′ the �th one. So, the �th
dot on the line ξ = 2k is to the right of the �th one on the line ξ = 2k + 2. ��
We now give the proof of Proposition 1.3.

Proof of Proposition 1.3 Consider two consecutive lines ξ = 2α and ξ = 2α + 2
through blue dots, with the squares A and B, containing each a dot and no dot in
between A and B; see Fig. 13. This is to say, the level of the line ξ = 2α goes
down from k to k − 1 within square A, stays flat in between A and B and then goes
down from k − 1 to k − 2 within square B. We now consider the line ξ = 2α + 2
between the two corresponding squares A′ and B ′, with same η coordinates as A and
B respectively.
We show there must be at least one dot in between the squares A′ and B ′, possibly
including A′ or B ′. One checks there are exactly six configurations with a dot in the
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i

i 1

ii

i

i

i

i i

i 1

i
i

i 1 i 1

i

i

i

i

i
i

i

i

i 1

i 1

i

i

i 1

i 1
i

i 1

i

i 1

i 1

i

i 1

i

+ +

+ +

++

++

+

+

+

+

Fig. 12 The four upper configurations are the only coverings of A and A′ of Fig. 11, with A′ carrying a dot
and not A. The four lower configurations are the only coverings of A and A′, with both A and A′ carrying
a dot

Fig. 13 Between the two gray
squares labeled A and B the
height function stays constant;
therefore the line between A and
B contains no dots

A′

A

B′

B

k

k − 1

k − 1

k − 2

upper-left square; see Fig. 14. Superimposing any of the four upper configurations on
(A, A′) or (B, B ′) will give a dot in A′ or B ′. Assuming no dot, neither at A′, nor at
B ′, the configuration (A, A′) or (B, B ′) at Fig. 13 can be covered by any combination
of configurations (I) and (II) in Fig. 14. Indeed,

(A, A′) (B, B ′)
I(i = k − 1) I(i = k − 2)
I(i = k − 1) II( j = k − 2)
II( j = k − 1) I(i = k − 2)
II( j = k − 1) II( j = k − 2)
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I II

i i i

i 1 i 1

i 1 i 1i 1

j j j

j 1 j 1

j 1 j 1j 1

+

+ + +

+ +

+ + +

+

Fig. 14 Let the squares A and A′ (as in Fig. 13) each contain a dot, then the four upper figures are the
only possible covers of (A, A′). If A contains a dot and A′ does not, then the two lower figures are the only
possible coverings

In all four cases, the difference in height between the lower-left vertex of A′, having
height k, and the upper-right vertex of B ′, having height k − 1, will always = 1,
thus creating a jump in between and thus one dot. So in all cases, there will be at
least one dot in one of the squares on the segment (A′, B ′), including possibly on the
extremities.

Finally, this fact together with Lemma 4.1 on the number of blue and red dots and
Lemma 4.2 imply the interlacing, with regard to the η-coordinate. ��

5 Scaling limit of the L and K-processes

In this section we will prove Theorem 1.4 and Theorem 1.5. Let δ ∈ {0, 1}, where
δ = 0 will correspond to the L-kernel and δ = 1 to the K-kernel. We will ignore
the integer parts in the scaling (1.6) and (1.8). This makes no essential difference but
simplifies the notation. Set

ft,δ(u1, y1; u2, y2) = (−a)(y2−y1)
√
t (−√

t)u2−u1(
√
t)1−2δ(−1)δ.

Then the prefactor in (1.7) for the L-kernel can be written

(−a)(η1−η2)/2(−√
t)(ξ1−ξ2)/2

√
t = a2(y1−y2)

√
t ft,0(u1, y1; u2, y2)

and the prefactor for the K-kernel in (1.9) is

ar2−r1(
√
t)x1−x2+r2−r1(−1)x1−x2

= a2(y2−y1)
√
t (−a)(y1−y2)

√
t (−√

t)u1−(u2+1)(−√
t)

= a2(y2−y1)
√
t ft,1(u2 + 1, y2; u1, y1).
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Define

C (1)
2t+ε,ρ,δ(u1, y1; u2, y2) = − ft,δ(u1, y1; u2, y2)(1 + a2)

(
(1 − δ)Iu2<u1 + δIy1<y2

)

× 1

2π i

∫
Γ0,a

(1 + aw)(y1−y2)
√
t−1+δ

(w − a)(y1−y2)
√
t+1−δ

wu2−u1 dw,

C (2)
2t+ε,ρ,δ(u1, y1; u2, y2) = ft,δ(u1, y1; u2, y2)

× (1 + a2)

(2π i)2

∫
Γ0,a

dz
∫

Γ0,a,z

dw

w − z

wu2 (1 + az)t+y1
√
t−1+δ(z − a)t−y1

√
t+ε+δ

zu1 (1 + aw)t+y2
√
t (w − a)t−y2

√
t+1+ε

and

C (3)
2t+ε,ρ,δ(u1, y1; u2, y2) = − ft,δ(u1, y1; u2, y2)(1 + a2)

×
〈
((I − K2t+ε)

−1
≥2t+ε−ρ+1A4t+2ε−2u1,2t+2y1

√
t−1,δ)(.),

B4t+2ε−2u2,2t+2y2
√
t−1(.)

〉
≥2t+ε−ρ+1

,

where

A4t+2ε−2u1,2t+2y1
√
t−1,δ(k)

= − (−1)k

2π i

∫
Γ0,a

w2t+ε−u1−k

(1 + aw)t+ε−y1
√
t+1−δ(w − a)t+y1

√
t+1−δ

dw

+ (−1)k

(2π i)2

∫
Γ0,a

dz
∫

Γ0,a,z

dw

w − z

w2t+ε−k(1 + az)t+y1
√
t−1+δ(z − a)t−y1

√
t+ε+δ

zu1(1 + aw)2t+ε(w − a)2t+ε+1 ,

(5.1)

which is a slight modification of Aξ1,η1(k) in (2.2), and where Bξ2,η2(k) and K2t+ε

are as given in (2.2). With these definitions it follows from (2.1) that

(−a)(η1−η2)/2(−√
t)(ξ1−ξ2)/2L2t+ε,ρ(ξ1, η1; ξ2, η2)

√
t

= a2(y1−y2)
√
t (C (1)

2t+ε,ρ,0 + C (2)
2t+ε,ρ,0 + C (3)

2t+ε,ρ,0)(u1, y1; u2, y2), (5.2)

if we have the scaling (1.6). Similarly, it follows from (2.3) that

(1 − pn)a
r2−r1(

√
t)x1−x2+r2−r1(−1)x1−x2K2t+ε,ρ(2r1, x1; 2r2, x2)

= 2

1+a2
a2(y2−y1)

√
t
((

C (1)
2t+ε,ρ,1+C (2)

2t+ε,ρ,1+C (3)
2t+ε,ρ,1

)
(u2 + 1, y2; u1, y1)

)
.

(5.3)

We will now use (5.2) to prove (1.7). The proof of (1.9) from (5.3) is completely
analogous since the change from δ = 0 to δ = 1 has no effect in the limit. Note that
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a2(y1−y2)
√
t → e2β(y2−y1) as t → ∞ since a = 1 − β/

√
t . We see that (1.7) follows

from

lim
t→∞

3∑
i=1

C (i)
2t+ε,ρ,0(u1, y1; u2, y2) = e2β(y1−y2)Kβ,ρ(u1, y1; u2, y2). (5.4)

Let C1 be the positively oriented unit circle and let C2 = C′
2 +C′′

2 , where C′
2 consists

of two infinite line segments t → β + it , t ∈ (−∞,−2] ∪ [2,∞), and C′′
2 is a smooth

curve that goes from β − 2i to β + 2i to the right of C1, see Fig. 15.
Let C2 be C2 reflected through the origin.
Set

Gx,t (ζ ) =
(
a−1 − ζ/

√
t

a + ζ/
√
t

)x
√
t

and

Fx,t (ζ ) =
(
a−1 − ζ/

√
t
)t+x

√
t (

a + ζ/
√
t
)t−x

√
t

so that Fx,t (ζ ) = F0,t (ζ )Gx,t (ζ ). Also, we write

gx,β(ζ ) = e2x(β−ζ ), and fβ(ζ ) = e2βζ−ζ 2 .

The next lemma contains the estimates we need.

Fig. 15 The contour paths

β

1

1

2

2

2
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Lemma 5.1 Fix A > 0, β ∈ R and k ≥ 1. There is a t0 and a constant C such that
for all t ≥ t0, x ∈ [−A, A], s ∈ R and ζ ∈ C1 ∪ C′′

2 we have the following estimates

1

|Fx,t (β + is)| ≤ 1

1 + s2k/2kk! , (5.5)
∣∣∣∣Gx,t (ζ )

gx,β(ζ )
− 1

∣∣∣∣ ≤ C√
t
, (5.6)

and

∣∣∣∣ F0,t (ζ )

fβ(ζ )
− 1

∣∣∣∣ ≤ C√
t
. (5.7)

Proof We have, since a = 1 − β/
√
t , that

|Fx,t (β + is)| =
∣∣∣∣a−1 − β + is√

t

∣∣∣∣
t+x

√
t ∣∣∣∣a + β + is√

t

∣∣∣∣
t−x

√
t

.

Now,

∣∣∣∣a + β + is√
t

∣∣∣∣
2

= 1 + s2

t

and

∣∣∣∣a−1 − β + is√
t

∣∣∣∣
2

=
(

1

1 − β/
√
t

− β
√
t

)2

+ s2

t
≥ 1 + s2

t

when t is large enough. Thus,

|Fx,t (β + is)| ≥
(
1 + s2

t

) 1
2 (t+x

√
t) (

1 + s2

t

) 1
2 (t−x

√
t)

=
(
1 + s2

t

)t

.

By the binomial theorem, for 1 ≤ k ≤ t/2

(
1 + s2

t

)t

= 1 +
t∑

r=1

t . . . (t − r + 1)

tr r ! s2r ≥ 1 + t . . . (t − k + 1)

tkk! s2k

≥ 1 + (t/2)k

tkk! s2k = 1 + s2k

2kk! .
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This proves (5.5). Note that C1∪C′′
2 is a fixed compact set. The estimates (5.6) and (5.7)

follow from the inequalities

∣∣∣x√t log(a + ζ/
√
t) − x(ζ − β)

∣∣∣ ≤ C√
t
,

∣∣∣x√t log(a−1 − ζ/
√
t) − x(β − ζ )

∣∣∣ ≤ C√
t
,

and

∣∣∣t log(a−1 − ζ/
√
t)(a + ζ/

√
t) − (2ζβ − ζ 2)

∣∣∣ ≤ C√
t
,

for sufficiently large t , which in turn follow from Taylor’s theorem. ��

Consider first C (1)
2t+ε,ρ,0. The case y1 = y2 is special. In this case we obtain

C (1)
2t+ε,ρ,0(u1, y1; u2, y2)

= −(−√
t)u2−u1

√
tIu2<u1

1 + a2

2π i

∫
Γ0,a

wu2−u1

(1 + aw)(w − a)
dw

= (−√
t)u2−u1

√
tIu2<u1

a + 1/a

2π i

∫
Γ−a−1

wu2−u1

(w + 1/a)(w − a)
dw

= −(−√
t)u2−u1

√
tIu2<u1(−1/a)u2−u1 .

In the second inequality we deformed the contour through infinity to a contour sur-
rounding −1/a. If u2 = u1 − 1 this equals −a which goes to −1 as t → ∞. If
u2 < u1 − 1 the last expression goes to 0 as t → ∞.

If y1 > y2 then deforming the contour to Γ−1/a shows that C
(1)
2t+ε,ρ,0 = 0. Assume

that y1 < y2. Then, for large enough t , since w = a is not a pole,

C (1)
2t+ε,ρ,0(u1, y1; u2, y2)

= −Iu2<u1
1 + a2

2π i

∫
Γ0

(
a−1 + w

a − w

)(y1−y2)
√
t

(−w
√
t)u2−u1

(1 + aw)(a − w)
(−√

t) dw

= −Iu2<u1
1 + a2

2π i

∫
C1

Gy1−y2,t (ω)
ωu2−u1

(1 − aω/
√
t)(a + ω/

√
t)

dω
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by the change of variables w = −ω/
√
t . It now follows from Lemma 5.1 that

lim
t→∞C (1)

2t+ε,ρ,0(u1, y1; u2, y2)

= −Iu2<u1
2

2π i

∫
C1

e2(y2−y1)(ω−β) dω

ωu1−u2

= −Iu2<u1e
2β(y1−y2)2u1−u2 (y2 − y1)u1−u2−1

(u1 − u2 − 1)! .

Thus, for all y1, y2,

lim
t→∞C (1)

2t+ε,ρ,0(u1, y1; u2, y2)

= −Iu1=u2+1Iy1=y2 − Iu2<u1Iy1<y2e
2β(y1−y2)2u1−u2 .

(y2 − y1)u1−u2−1

(u1 − u2 − 1)!
= −e2β(y1−y2)2u1−u2Hu1−u2(y2 − y1), (5.8)

where

Hm(z) = zm−1

(m − 1)!
(
Iz>0 + 1

2
Iz=0

)

for m ≥ 1.
Consider now C (2)

2t+ε,ρ,0. We can write, using the fact the z contour has no pole at

z = a for t large, and by completing the C2/
√
t contour with an infinite semi-circle

on the right,

C (2)
2t+ε,ρ,0(u1, y1; u2, y2) = 1 + a2

(2π i)2

∫

C1/
√
t

dz(−√
t)

×
∫

C2/
√
t

dw

w − z

(−w
√
t)u2(a−1 + z)t+y1

√
t (a − z)t−y1

√
t+ε

(−z
√
t)u1(a−1 + w)t+y2

√
t (a − w)t−y2

√
t+ε

1

(1 + az)(a − w)

= 1 + a2

(2π i)2

∫
C1

dζ

∫
C2

dω

ω − ζ

ωu2Fy1,t (ζ )

ζ u1Fy2,t (ω)

(a + ζ/
√
t)ε

(1 − aζ/
√
t)(a + ω/

√
t)1+ε

.

It now follows from Lemma 5.1 that

lim
t→∞C (2)

2t+ε,ρ,0(u1, y1; u2, y2)

= 2

(2π i)2

∫
C1

dζ

∫
C2

dω

ω − ζ

ωu2 fβ(ζ )gy1,β(ζ )

ζ u1 fβ(ω)gy2,β(ω)

= e2β(y1−y2) 2

(2π i)2

∫
C1

dζ

∫
C2

dω

ω − ζ

ωu2e−ζ 2+2(β−y1)ζ

ζ u1e−ω2+2(β−y2)ω
. (5.9)
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We choose k in (5.5) so that 2k > u2, which gives a uniform t-independent upper
bound on C′

2. Combining (5.8) and (5.9) we see that

lim
t→∞(C (1)

2t+ε,ρ,0+C (2)
2t+ε,ρ,0)(u1, y1; u2, y2) = e2β(y1−y2)Kminor(u1, β−y1; u2, β−y2).

(5.10)

Next, consider

C (3)
2t+ε,ρ,0(u1, y1; u2, y2) = −(−a)(y2−y1)

√
t (−√

t)u2−u1
√
t(1 + a2)

×
∞∑

κ,λ=0

B4t+2ε−2u2,2t+2y2
√
t−1(λ + 2t + ε − ρ + 1)

× (I − K2t+ε)
−1
≥2t+ε−ρ+1(λ + 2t + ε − ρ + 1, κ + 2t + ε − ρ + 1)

× A4t+2ε−2u1,2t+2y1
√
t−1,0(κ + 2t + ε − ρ + 1),

where Aξ1,η1,0 is given by (5.1),

B4t+2ε−2u2,2t+2y2
√
t−1( j)

= (−1) j

2π i

∫
Γ0,a

(1 + az)t−y2
√
t+ε(z − a)t+y2

√
t zu2−1−2t−ε+ j dz

+ (−1) j

(2π i)2

∫
Γ0,a

dw

∫
Γ0,a,w

dz

w − z

zu2(1 + aw)2t+ε(w − a)2t+ε

w2t+ε− j+1(1 + az)t+y2
√
t (z − a)t−y2

√
t+1+ε

and

K2t+ε( j, k) = (−1) j+k

(2π i)2

∫
Γ0,a

dw

∫
Γ0,a,w

dz

z − w

z2t+ε− j (1 + aw)2t+ε(w − a)2t+ε+1

w2t+ε−k+1(1 + az)2t+ε(z − a)2t+ε+1 .

Set

Ãu1,y1,0(κ) = (−a)t−y1
√
t (−√

t)−u1(
√
t)ρ−κ−1√t(−1)−ε

× A4t+2ε−2u1,2t+2y1
√
t−1,0(κ + 2t + ε − ρ + 1),

B̃u2,y2(λ) = (−a)y2
√
t−t (−√

t)u2(
√
t)λ−ρ+1(−1)−ε

× B4t+2ε−2u2,2t+2y2
√
t−1(λ + 2t + ε − ρ + 1)

and

K̃2t+ε(λ, κ) = (
√
t)κ−λK2t+ε(λ + 2t + ε − ρ + 1, κ + 2t + ε − ρ + 1).
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Note that the matrix with elements

(
√
t)κ−λ(I − K2t+ε)

−1
≥2t+ε−ρ+1(λ + 2t + ε − ρ + 1, κ + 2t + ε − ρ + 1)

is the inverse of the matrix with elements δκ,λ − K̃2t+ε(λ, κ). Thus,

C (3)
2t+ε,ρ,0(u1, y1; u2, y2)=−(1+a2)

∞∑
κ,λ=0

B̃u2,y2(λ)(I− K̃2t+ε)
−1
≥0(λ, κ) Ãu1,y1,0(κ)

(5.11)

and we want to take the limit of this sum. (Note that the sum is finite even in the limit.)
Rewriting in the same way as above we see from (5.1) that

Ãu1,y1,0(κ) = − 1

2π i

∫
C2

ω−κ−u1+ρ−1

F−y1,t (ω)

dω

(1 − aω/
√
t)1+ε(a + ω/

√
t)

+ 1

(2π i)2

∫
C1

dζ

∫
C2

dω

ω − ζ

ζ−u1Fy1,t (ζ )

ωκ+1−ρF0,t (ω)2

× (a + ζ/
√
t)ε

(1 − aζ/
√
t)(a + ω/

√
t)1+ε(1 − aω/

√
t)ε

.

Using Lemma 5.1 we can take the limit t → ∞ to get

lim
t→∞ Ãu1,y1,0(κ) = − 1

2π i

∫
C2

ω−κ−u1+ρ−1

fβ(ω)g−y1,β(ω)
dω

+ 1

(2π i)2

∫
C1

dζ

∫
C2

dω

ω − ζ

ζ−u1 fβ(ζ )gy1,β(ζ )

ωκ+1−ρ fβ(ω)2

= −e2βy1Aβ,y1−β
u1 (κ − ρ). (5.12)

Similarly we get

B̃u2,y2(λ) = 1

2π i

∫
C1

F−y2,t (ζ )ζ u2+λ−ρ(1 − aζ/
√
t)ε dζ

+ 1

(2π i)2

∫
C1

dω

∫
C2

dζ

ω − ζ

ωλ−ρF0,t (ω)2

ζ−u2Fy2,t (ζ )

(a + ω/
√
t)1+ε(1−aω/

√
t)ε

(a+ζ/
√
t)1+ε
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and again by Lemma 5.1 we find

lim
t→∞ B̃u2,y2(λ) = 1

2π i

∫
C1

fβ(ζ )g−y2,β(ζ )ζ u2+λ−ρ dζ

+ 1

(2π i)2

∫
C1

dω

∫
C2

dζ

ω − ζ

ωλ−ρ fβ(ω)2

ζ−u2 fβ(ζ )gy2,β(ζ )

= e−2βy2Bβ,y2−β
u2 (λ − ρ). (5.13)

Finally,

K̃2t+ε(λ, κ)

= 1

(2π i)2

∫
C1

dω

∫
C2

dζ

ζ − ω

ωκ−ρF0,t (ω)2

ζ λ−ρ+1F0,t (ζ )2

(1 − aω/
√
t)ε(a + ω/

√
t)ε+1

(1 − aζ/
√
t)ε(a + ζ/

√
t)ε+1

and we see from Lemma 5.1 that

lim
t→∞ K̃2t+ε(λ, κ) = 1

(2π i)2

∫
C1

dω

∫
C2

dζ

ζ − ω

ωκ−ρ fβ(ω)2

ζ λ−ρ+1 fβ(ζ )2

= Kβ(λ − ρ, κ − ρ). (5.14)

It now follows from (5.11), (5.12), (5.13) and (5.14) that

lim
t→∞C (3)

2t+ε,ρ,0(u1, y1; u2, y2)=2e2β(y1−y2)〈(I− Kβ)−1≥−ρAβ,y1−β
u1 (.), Bβ,y2−β

u2 (.)〉≥−ρ.

Together with (5.10) this proves (5.4).
It is not difficult to get t-independent bounds on the L-kernel using the same argu-

ments as above and in this way we can show, in a standard manner, that the appropriate
Fredholm determinant converges and obtain weak convergence of the L-particle point
process. We will not enter into the details.

6 Proof of the inverse Kasteleyn formula

In this section we prove Theorem 2.3. We will use the fact that

Kn,ρ

(
b2 + 1,

b2 − b1 + 2m + 1

2
;w2 + 1,

w2 − w1 + 2m + 1

2

)

= −K inlier
n,m

(
b2 + 1,

b2 − b1 + 2m + 1

2
;w2 + 1,

w2 − w1 + 2m + 1

2

)
,

where the kernel K inlier
n,m is the inlier kernel from [2], dual to Kn,p. We will use the

form of the inlier kernel that comes directly from the Eynard-Mehta theorem. Let
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ψ̃2r+ε1,2s+ε2(x, y) = ψ2r+ε1,2s+ε2(x, y)I2r+ε1<2s+ε2 (6.1)

where ψ is defined in (2.5).
Letw = (w1, w2) ∈ W,b = (b1, b2) ∈ B, u1 = w2+1, u2 = (w2−w1+2m+1)/2,

v1 = b2 + 1, v2 = (b2 − b1 + 2m + 1)/2 and denote

sgn(w,b) = (−1)(w1−w2+b1−b2+2)/4

Define

f̃1(w,b) = −sgn(w,b)ψ̃v1,u1(v2, u2)

and

f̃2(w,b) = sgn(w,b)

2m+1∑
i, j=1

ψ̃v1,2n+1(v2, i − m − 1)(A−1)i, j ψ̃0,u1( j − m − 1, u2)

where

A =
(
ψ̃0,2n+1(i − m − 1, j − m − 1)

)2m+1

i, j=1
. (6.2)

We then get

−(−1)(w1−w2+b1−b2+2)/4
Kn,ρ (v1, v2; u1, u2) = f̃1(w,b) + f̃2(w,b)

and we want to prove that

K−1
a (w,b) = f̃1(w,b) + f̃2(w,b).

To make the computations simpler, we define Ta and C with

Ka(b,w) = −(−1)(b1+b2−1)/2Ta(b,w)

and

f̃1(w,b) + f̃2(w,b) = −(−1)−(b1+b2−1)/2C(w,b).

and we will write

fi (w,b) = −(−1)(b1+b2−1)/2 f̃i (w,b).

Therefore, showing Ka .( f̃1 + f̃2) = I is equivalent to showing Ta .C = I.
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We will use the notation that b = (b1, b2) and y = (y1, y2) are black vertices. We
have that

(Ta fi )(b,y) =
∑
w∼b

Ta(b,w) fi (w,y) (6.3)

for i ∈ {1, 2}wherew ∼ ymeans thatw is nearest neighbors tob because Ta(b,w) = 0
if b and w are not nearest neighbors. We can then write

(TaC)(b,w) =
∑

i∈{1,2}
(Ta fi )(b,y).

The number of terms on the right hand side of Eq. (6.3) is dependent on the location
of b and so we split the computation for finding TaC(b,y) into the different locations
of b. These are given by

(i) The interior, labeled I,
(ii) The left hand boundary, labeled L,
(iii) The bottom boundary, labeled B,
(iv) The top boundary but not equal to (2n, 2n − 1), labeled T and
(v) The special point, (2n, 2n − 1).

The left hand boundary, L, consists of vertices b = (0, b2) where b2 ∈ 2Z+ 1 and
1 ≤ b2 ≤ 2n−1. For b ∈ L, we have that b has two neighboring white vertices given
by b + e1 and b − e2.

The bottom boundary, B, consists of vertices b = (b1,−1) where b1 ∈ 2Z and
4m + 2 ≤ b1 ≤ 4m + 2n. For b ∈ B, we have that b has two neighboring white
vertices given by b + e1 and b + e2.

The top boundary, T , consists of vertices b = (b1, 2n − 1) where b1 ∈ 2Z and
2n + 2 ≤ b1 ≤ 4m + 2n. For b ∈ T , we have that b has two neighboring white
vertices given by b − e1 and b − e2.

For the special point, b = (2n, 2n−1), we have that b has three neighboring white
vertices given by b + e2,b − e2 and b − e1.

The interior, I, is given by the remaining vertices. For b ∈ I, we have that b has
four neighboring white vertices given by b ± er for r ∈ {1, 2}.

In each of the above cases, we evaluate (6.3). Due to the formulas for f1 and f2
being rather complicated, we used computer algebra to help with the computations.
We give the calculation for the first case with full details and for the remaining cases,
we provide an overview of the main steps. We now proceed with checking the above
cases.

6.1 The interior

Using (2.6) and the definition of Ta(b,w), we have that for b ∈ I

Ta(b,w) =
⎧⎨
⎩

±1 if w = b ± e1
∓ai if w = b ± e2
0 otherwise.
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When b ∈ I and y ∈ BAD , we have that (6.3) reads

Ta fi (b,y) = fi (b + e1,y) − fi (b − e1,y) + ( fi (b − e2,y) − fi (b + e2,y))ai

(6.4)

for i ∈ {1, 2}.
We first simplify (6.4) for i = 1. We can expand out the definition of f1 in terms

of ψ̃ . This means that we can rewrite (6.4) for i = 1 in terms of ψ̃ . We obtain

Ta f1(b,y) = −(−1)(b1−b2+y1−y2)/4iy1+y2

×
(
aψ̃y2+1,b2

(
2m + 1 − y1 + y2

2
,
2m − 1 − b1 + b2

2

)

+ψ̃y2+1,b2

(
2m + 1 − y1 + y2

2
,
2m + 1 − b1 + b2

2

)

−ψ̃y2+1,b2+2

(
2m + 1 − y1 + y2

2
,
2m + 1 − b1 + b2

2

)

+ aψ̃y2+1,b2+2

(
2m + 1 − y1 + y2

2
,
2m + 3 − b1 + b2

2

))
(6.5)

where ψ̃ is defined in (6.1).We shall evaluate Ta f1(b,w) in three cases: b2 = y2, b2 >

y2 and b2 < y2.
For y2 = b2, we only need to consider the last two terms of (6.5) because the first

two terms involving ψ̃ are zero by (6.1). Using (6.1), we can rewrite (6.5) in terms of
ψ and hence write each expression as an integral. We find for b2 = y2

Ta f1(b,y) = (−1)
b1+y1

4 iy1
(

ψy2+1,y2+2

(
2m + 1 − y1 + y2

2
,
2m + 1 − b1 + y2

2

)

− aψy2+1,y2+2

(
2m + 1 − y1 + y2

2
,
2m + 3 − b1 + y2

2

))

= (−1)
b1+y1

4 iy1

2π i

∫
Γ0,a

(
−w

1
2 (b1−y1)

a − w
+ aw

1
2 (b1−y1−2)

a − w

)
dw

= (−1)
b1+y1

4 iy1

2π i

∫
Γ0,a

w
b1−y1−2

2 dw

=
{
i2y1 = 1 if b1 = y1
0 otherwise

because y1 ∈ 2Z.
As both b and y are black vertices we have that b2 and y2 are both odd integers.

Therefore, the condition that b2 > y2 is equivalent to b2 > y2 + 1. For b2 > y2, all
four terms of (6.5) involving ψ̃ are nonzero and each term can be rewritten using ψ .
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We find that for b2 > y2

Ta f1(b,y) = −(−1)(b1−b2+y1−y2)/4iy1+y2

×
(
aψy2+1,b2

(
2m + 1 − y1 + y2

2
,
2m − 1 − b1 + b2

2

)

+ψy2+1,b2

(
2m + 1 − y1 + y2

2
,
2m + 1 − b1 + b2

2

)

−ψy2+1,b2+2

(
2m + 1 − y1 + y2

2
,
2m + 1 − b1 + b2

2

)

+ aψy2+1,b2+2

(
2m + 1 − y1 + y2

2
,
2m + 3 − b1 + b2

2

))
(6.6)

To evaluate (6.6), we need to evaluate an expression of the form

aψ2r,2s+1(x1, x2) + ψ2r,2s+1(x1, x2 + 1)

−ψ2r,2s+3(x1, x2 + 1) + aψ2r,2s+3(x1, x2 + 2) (6.7)

for r, s, x1, x2 ∈ Z. We can expand (6.7) in terms of its integral decomposition and
combine all the terms under one integral. We obtain

∮
Γ0,a

dz

2π i
zx1−x2 (1 + az)s−r

(1 − a
z )

s−r+1

(
a + 1

z
− z−1(1 + az)

1 − a
z

+ az−2(1 + az)

1 − a
z

)
.

In the above equation, the term inside the parenthesis is zero. This means we can write

aψ̃2r,2s+1(x1, x2) + ψ̃2r,2s+1(x1, x2 + 1)

−ψ̃2r,2s+3(x1, x2 + 1) + aψ̃2r,2s+3(x1, x2 + 2) = 0 for r < s. (6.8)

Using the relation in (6.8), we have that right hand side of (6.6) is equal to zero for
b2 > y2 which means that Ta f1(b,w) = 0 for b2 > y2.

As b2 and y2 are both odd integers, the condition that b2 < y2 is equivalent to
b2 + 1 < y2. We can expand (6.5) using the definition of ψ̃ given in (6.1) and we find
that all the terms of (6.5) are equal to zero. Therefore, we have that Ta f1(b,w) = 0
for b2 < y2.

We have shown that for b ∈ I

Ta f1(b,y) =
{
1 if b = y,

0 otherwise.
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For the term Ta f2(b,y), using (6.4) we can write Ta f2(b,y) under one sum. We
obtain

Ta f2(b,y) = (−1)
b1−b2+y1−y2

4 iy1+y2
2m+1∑
i, j=1

(A−1)i j

× ψ̃1+y2,2n+1

(
2m + 1 − y1 + y2

2
, i − m − 1

)

×ΔIψ̃0,b2+1

(
j − m − 1,

2m + 2 − b1 + b2
2

)

where

ΔIψ̃0,b2+1

(
j − m − 1,

2m+2−b1+b2
2

)
=aψ̃0,b2

(
j−m−1,

2m−1−b1+b2
2

)

+ ψ̃0,b2

(
j−m−1,

2m+1−b1+b2
2

)

− ψ̃0,b2+2
(
j−m−1,

2m+1−b1+b2
2

)

+ aψ̃0,b2+2
(
j−m−1,

2m+3−b1+b2
2

)

As b2 > 0, we can use the relation given in (6.8) to find that

ΔIψ̃0,b2+1

(
j − m − 1,

2m + 2 − b1 + b2
2

)
= 0.

Therefore, we have

Ta f2(b,y) = 0 b ∈ I,y ∈ BAD.

To summarize, we have

TaC(b,y) =
{
1 if b = y
0 otherwise.

6.2 The left hand boundary

Next, we check Ta .C for b on the left hand boundary. For b ∈ L we have that

Ta(b,w) =
⎧⎨
⎩
1 if w = b + e1
ai if w = b − e2
0 otherwise.

For b ∈ L and y ∈ BAD , using the above equation we find that (6.3) is given by

Ta fi (b,y) = fi (b + e1,y) + fi (b − e2,y)ai (6.9)
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Similar to the interior, we can expand Ta f1(b,w) in terms of ψ̃ and rewrite Ta f1(b,w)

in terms of an integral using the definition of ψ given in (2.5). By a computation, we
find that for b2 = y2, we obtain

Ta f1(b,y) = 1

2π i

∫
Γ0,a

e3π iy1/4w−y1/2

w − a
dw

=
{
1 if y1 = 0
0 otherwise.

(6.10)

because y1 ∈ 2N, as the integrand has no pole at infinity. For b2 > y2, we also find
by computation that

Ta f1(b,y) = (−1)(−b2+y1−y2)/4iy1+y2

2π i
(1 + a2)

×
∫

Γ0,a

w−y1/2(w − a)(y2−b2−2)/2(aw + 1)(b2−y2−2)/2dw

As b2 > y2 (i.e. b2 ≥ y2 + 2) and y1 ≥ 0, the integrand has no pole at infinity or
−1/a, hence

Ta f1(b,y) = 0. (6.11)

We find that for b2 < y2

Ta f1(b,y) = 0 (6.12)

by using the same reasoning as the case for b in the interior, that is, each term in the
expansion of Ta f1(b,y) in terms of ψ̃ is equal to zero.

Using Eqs. (6.10), (6.11) and (6.12) we have

Ta f1(b,y) =
{
1 if b = y
0 otherwise

(6.13)

forb ∈ L. Similar to the interior case, using the expansion of Ta f2(b,y) given in (6.9),
we can expand using the definition of f2(b,w) to obtain

Ta f2(b,y) = (−1)(y1−b2−y2)/4iy1+y2
m∑

i, j=1

(A−1)i, j

× ψ̃1+y2,2n+1

(
2m + 1 − y1 + y2

2
, i − m − 1

)

ΔLψ̃0,b2+1

(
j − m − 1,

2m + 2 + b2
2

)
(6.14)
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where

ΔLψ̃0,b2+1

(
j − m − 1,

2m + 2 + b2
2

)
= aψ̃0,b2

(
j − m − 1,

2m − 1 + b2
2

)

− ψ̃0,b2+2

(
j−m − 1,

2m+1 + b2
2

)
.

We can rewrite the right hand side of the above equation in terms of its contour integral
using (6.1) which gives

− 1

2π i

∫
Γ0,a

(1 + a2)w−1+ j−2m(w − a)(−3−b2)/2(1 + aw)(b2−1)/2dw.

Since 1 ≤ j ≤ m, b2 ≥ 1 the integrand has no pole at −1/a or infinity,hence the
above quantity is zero and so the right hand side of (6.14) is equal to zero. Combining
with (6.13) gives

TaC(b,y) =
{
1 if b = y
0 otherwise

for b ∈ L and y ∈ BAD .

6.3 The bottom boundary

We now consider the bottom boundary. We have that for b ∈ B

Ta(b,w) =
⎧⎨
⎩
1 if w = b + e1
−ai if w = b + e2
0 otherwise.

Using the above equation, (6.3) can be rewritten for b ∈ B and is given by

Ta fi (b,y) = fi (b + e1,y) − ai fi (b + e2,y). (6.15)

We first consider Ta f1(b,w) for b2 = y2 = −1. Similar to the analogous computation
for b in the interior, we can expand the right hand side of (6.15) in terms of ψ and
rewrite the expression as an integral. By a computation, we find that

Ta f1(b,y) = (−1)(b1+y1)/4iy1

2π i

∫
Γ0,a

w(b1−y1−2)/2dw

=
{
1 if b = y
0 otherwise.

(6.16)
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For b2 = −1 < y2, using the same reasoning as given for b in the interior, we have

Ta f1(b,y) = 0. (6.17)

Combining Eqs. (6.16) and (6.17), we have

Ta f1(b,y) =
{
1 if b1 = y1
0 otherwise

(6.18)

for b ∈ B and y ∈ BAD . For Ta f2(b,y), using (6.15) and following the same steps
for the analogous computation for b in the interior, we have

Ta f2(b,y) = (−1)(b1−b2+y1−y2)/4iy1+y2
2m+1∑
i, j=1

(A−1)i, j

× ψ̃y2+1,2n+1

(
2m + 1 − y1 + y2

2
, i − m − 1

)

×ΔBψ̃0,2+b2

(
j − m − 1,

2m + 2 − b1 + b2
2

)

where

ΔBψ̃0,2+b2

(
j − m − 1,

2m + 2 − b1 + b2
2

)

= −ψ̃0,b2+2

(
j − m − 1,

2m + 1 − b1 + b2
2

)

+ aψ̃0,b2+2

(
j − m − 1,

2m + 3 − b1 + b2
2

)
.

We can rewrite the above equation using the integral definition of ψ . A computation
gives

ΔBψ̃0,2+b2

(
j − m − 1,

2m + 2 − b1 + b2
2

)
= −1

2π i

∫
Γ0,a

w−2+ j−2m+b1/2dw = 0

because b1 ≥ 4m + 2 by the co-ordinates of the bottom boundary. We have obtained

Ta f2(b,y) = 0 (6.19)

for b ∈ B and y ∈ BAD . Using (6.18) and (6.19) gives

TaC(b,y) =
{
1 if b = y
0 otherwise

for b ∈ B and y ∈ BAD .
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6.4 The top boundary

We can now consider b = (b1, b2) on the top boundary which means that b2 = 2n−1
and b1 > 2n. We have that for b ∈ T

Ta(b,w) =
⎧⎨
⎩

−1 if w = b − e1
ai if w = b − e2
0 otherwise

We can use the above equation to rewrite (6.3). We obtain for b ∈ T and y ∈ BAD

Ta fi (b,y) = − fi (b − e1,y) + ai fi (b − e2,y) (6.20)

We first consider Ta f1(b,y) for b2 = y2 = 2n−1. By using the analogous expansion
for b as the interior case in terms of ψ and its integral definition, we find that for
b2 = y2 = 2n − 1

Ta f1(b,y) = 0. (6.21)

For y2 < b2 = 2n − 1, we find that

Ta f1(b,y) = − (−1)(1+b1+y1−y2)/4iy1+y2−n

2π i

×
∫

Γ0,a

(
1 − a

w

)(1−2n+y2)/2 (1 + aw)(2n−1−y2)/2

w(2n+1−b1+y1−y2)/2
dw. (6.22)

For Ta f2(b,y), using (6.20) we can follow the analogous computation in the interior
case, we find that

Ta f2(b,y) = (−1)(b1−b2+y1−y2)/4iy1+y2
2m+1∑
i, j=1

(A−1)i, j

× ψ̃y2+1,2n+1

(
2m + 1 − y1 + y2

2
, i − m − 1

)

×ΔT ψ̃0,b2

(
j − m − 1,

2m − b1 + b2
2

)
(6.23)

where

ΔT ψ̃0,b2

(
j − m − 1,

2m − b1 + b2
2

)
= aψ̃0,b2

(
j − m − 1,

2m − 1 − b1 + b2
2

)

+ψ̃0,b2

(
j −m −1,

2m +1− b1+ b2
2

)

= 1

2π i

∫
Γ0,a

w−2+ j−2m−n+b1/2(1 + aw)n(
1 − a

w

)n dw
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which is found by expanding out the integrands using the integral definition ofψ given
in (2.5) where we have used the fact that b2 = 2n − 1. Notice that we can rewrite the
right hand side of the above equation as

1

2π i

∫
Γ0,a

w−2+ j−2m−n+b1/2(1 + aw)n(
1 − a

w

)n dw

= ψ̃0,2n+1

(
j − m − 1,

2m − b1 + 2n

2

)

− aψ̃0,2n+1

(
j − m − 1,

2m + 2 − b1 + 2n

2

)
. (6.24)

which follows by using expanding the right hand side of the above equation using the
integral definition of ψ . By definition of the matrix A given in (6.2), we have

m∑
j=1

(A−1)i, j ψ̃0,2n+1 ( j − m − 1, k) = δi,k+m+1. (6.25)

Using (6.25) and (6.24) in (6.23) gives

Ta f2(b,y) = (−1)(b1−2n+1+y1−y2)/4iy1+y2

×
(

ψ̃y2+1,2n+1

(
2m + 1 − y1 + y2

2
,
2m − b1 + 2n

2

)

− a ψ̃y2+1,2n+1

(
2m + 1 − y1 + y2

2
,
2m + 2 − b1 + 2n

2

))

= (−1)(1+b1+y1−y2)/4iy1+y2−n

2π i

∫
Γ0,a

(
1 − a

w

)(1−v2n+y2)/2 (1 + aw)(2n−1−y2)/2

w(2n+1−b1+y1−y2)/2
dw

(6.26)

Therefore, for y2 < b2 using (6.22) and (6.26) gives

Ta .( f1 + f2)(b,y) = 0. (6.27)

For y2 = b2 = 2n − 1, using (6.26) we have

Ta f2(b,y) = (−1)(b1+y1)/4

4
iy1
∫

Γ0,a

w(b1−y1−2)/2dw =
{
1 if b1 = y1
0 otherwise.

(6.28)

Finally, using (6.21), (6.27) and (6.28), we have

TaC(b,y) =
{
1 if b1 = y1
0 otherwise

for b ∈ T and y ∈ BAD .
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6.5 The special point

Finally, we need to consider the special point, i.e. when we choose b = (2n, 2n − 1).
The special point has three neighboring white vertices and we have

Ta((2n, 2n − 1),w) =

⎧⎪⎪⎨
⎪⎪⎩

−1 if w = (2n − 1, 2n − 2)
−ai if w = (2n − 1, 2n)

ai if w = (2n + 1, 2n − 2)
0 otherwise

For b = (2n, 2n − 1) and y ∈ BAD , (6.3) becomes

Ta fi (b,y) = − fi (b − e1, y) + ai fi (b − e2,y) − ai fi (b + e2,y). (6.29)

For y2 = 2n − 1, using the analogous steps for b in the interior, we can write
using (6.29) and the integral definition of ψ

Ta f1(b,y) = (−1)y1/4in+y1

2π i

∫
Γ0,a

aw(2n−1−y1)/2

a − w
dw = 0, (6.30)

since y1 ≥ 2n + 2, when y2 = 2n − 1. For y2 < 2n − 1, we can write Ta f1(b,w)

using the integral definition of ψ given in (2.5). We obtain

Ta f1(b,y) = − (−1)(1+y1−y2)/4iy1+y2

2π i

×
∫

Γ0,a

(
1 − a

w

)(−1−2n+y2)/2 (1 + aw)(2n−1−y2)/2

w(y1+1−y2)/2
dw (6.31)

We can now expand out Ta f2(b,y) using (6.29) and the analogous computations given
in b in the interior. We find that

Ta f2(b,y) = (−1)(b1−b2+y1−y2)/4iy1+y2
2m+1∑
i, j=1

(A−1)i, j

× ψ̃1+y2,2n+1

(
2m + 1 − y1 + y2

2
, i − m − 1

)

×ΔS ψ̃0,b2

(
j − m − 1,

2m − b1 + b2
2

)
(6.32)

where

ΔS ψ̃0,b2

(
j − m − 1,

2m − b1 + b2
2

)
= aψ̃0,b2

(
j − m − 1,

2m − 1 − b1 + b2
2

)

+ψ̃0,b2

(
j − m − 1,

2m + 1 − b1 + b2
2

)

+aψ̃0,b2+2

(
j − m − 1,

2m + 3 − b1 + b2
2

)
.
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By setting b = (2n, 2n − 1), we have by a computation that

ΔS ψ̃0,2n

(
j − m − 1,

2m − 2n + 2n − 1

2

)
= 1

2π i

∫
Γ0,a

w−2+ j−2m(1 + aw)n(
1 − a

w

)n+1 dw

= ψ̃0,2n+1 ( j − m − 1,m + 1)

where the last equation follows from (2.5) and (6.1). We can substitute the above
equation into (6.32) and use Eq. (6.25) in a similar way to the analogous computation
found in the previous subsection. We find that

Ta f2(b,y) = (−1)(b1−b2+y1−y2)/4iy1+y2ψ̃1+y2,2n+1

(
2m + 1 − y1 + y2

2
,m + 1

)

= (−1)(1+y1−y2)/4iy1+y2

2π i

∫
Γ0,a

w(y2−y1−1)/2(1 + aw)(2n−1−y2)/2(
1 − a

w

)(2n+1−y2)/2
dw

(6.33)

We have that for y2 = 2n − 1, (6.33) is equal to

Ta f2(b,y) = 1

2π i

∫
Γ0,a

(−1)y1/4in+y1wn−1+y1/2dw =
{
1 if y1 = 2n
0 otherwise.

for b = (2n, 2n − 1).
Therefore, we have for b = (2n, 2n − 1)

Ta .C(b,y) =
∑

i∈{1,2}
Ta fi (b,y) =

{
1 if b = y
0 otherwise

by using Eqs. (6.30), (6.31) and (6.33) for b = (2n, 2n − 1) and y ∈ BAD .

7 Proof of the formula for the L-kernel

In this section, we derive the L kernel from the inverse Kasteleyn matrix. Let b j =
(ξ j , η j ), 1 ≤ j ≤ l, be the positions of black vertices in Kasteleyn coordinates. We
want to show that

P
[
L-particles at b1, . . . , bl

] = det
(
Ln,ρ

(
ξi , ηi ; ξ j , η j

)
1≤i, j,≤l

)
(7.1)

Note that we have anL-particle at a black vertex of b if and only if a dimer (domino)
covers the edges (b, b + f1) or (b, b + f2) where f1 = e1 and f2 = −e2. Hence, by
Theorem 2.2 and the linearity of the determinant in its rows, we have that
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P
[
L-particles at b1, . . . , bl

]

=
2∑

r1,...,rl

l∏
j=1

Ka(bi , bi + fri ) det
(
K−1
a (bi + fri , b j )

)
1≤i, j≤l

= det

⎛
⎝ 2∑

ri=1

Ka(bi , bi + fri )K
−1
a (bi + fri , b j )

⎞
⎠

1≤i, j≤l

Recall that, from (2.6), we have that

Ka(bi , bi + f1) = (−1)−(ξi+ηi+1)/2

and

Ka(bi , bi + f2) = (−1)−(ξi+ηi+1)/2ai.

If we use the formula (2.7) for the inverse Kasteleyn matrix, we see that

(−1)(η2−ξ2)/4−(η1−ξ1)/4
2∑

r=1

Ka(b1, b1 + fr )K
−1
a (b1 + fr , b2)

= Kn,ρ

(
η2 + 1,

η2 − ξ2 + M

2
; η1 + 2,

η1 − ξ1 + M

2

)

− aKn,ρ

(
η2 + 1,

η2 − ξ2 + M

2
; η1,

η1 − ξ1 + M − 2

2

)
,

where M = 2m + 1 and we have used (−1)−η1 = −1 since η1 is odd. Thus, to
prove (7.1) it suffices to show that

Ln,ρ(ξ1, η1; ξ2, η2) = Kn,ρ

(
η2 + 1,

η2 − ξ2 + M

2
; η1 + 2,

η1 − ξ1 + M

2

)

−aKn,ρ

(
η2 + 1,

η2 − ξ2 + M

2
; η1,

η1 − ξ1 + M − 2

2

)

Now, with εi ∈ {0, 1} we have from (2.5) we have

Kn,ρ(2r + ε1, x; 2s + ε2, y) = −I2s+ε2<2r+ε1ψ2r+ε1,2s+ε2 (x, y)

+ (−1)x−y S(2r + ε1, x; 2s + ε2, y)

− (−1)x−y
〈
((I − K)−1

2m+1a−y,2s+ε2 )(k), b−x,2r+ε1 (k)
〉
l
2
(2m+1)

:=
2∑

i=0

R(i)
n,m(2r + ε1, x; 2s + ε2, y).
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Define

T (i)
n,m(ξ1, η1; ξ2, η2) = R(i)

n,m

(
η2 + 1,

η2 − ξ2 + M

2
; η1 + 2,

η1 − ξ1 + M

2

)

−aR(i)
n,m

(
η2+1, η2− ξ2 + M

2
; η1,

η1 − ξ1 + M − 2

2

)
. (7.2)

We have to show that

2∑
i=0

T (i)
n,m(2r + ε1, x; 2s + ε2, y) = Ln,ρ(ξ1, η1; ξ2, η2). (7.3)

Since η1 and η2 are odd we can write η1 = 2s − 1, η2 = 2r − 1 so that η2 + 1 = 2r
and η1 = 2(s − 1) + 1 and η1 + 2 = 2s + 1. Now by (2.5),

T (0)
n,m(ξ1, η1; ξ2, η2)

= − I2s+1<2r

2π i

∫
Γ0,a

(1 + az)s−r

(1 − a/z)s−r+1 z
(η2−η1)/2+(ξ1−ξ2)/2 dz

z

+ aI2s−1<2r

2π i

∫
Γ0,a

(1 + az)s−1−r

(1 − a/z)s−r
z(η2−η1)/2+(ξ1−ξ2)/2+1 dz

z
. (7.4)

If η1 > η2, i.e. s ≥ r + 1, then 2s + 1 > 2s − 1 > 2r and the expression in the right
hand side of (7.4) is equal to zero. If η1 = η2, i.e. r = s, we get

a

2π i

∫
Γ0,a

z(ξ1−ξ2)/2

1 + az
dz = aIξ1<ξ2

2π i

∫
Γ0,a

z(ξ1−ξ2)/2

1 + az
dz

= − Iξ1<ξ2

2π i

∫
Γ−1/a

z(ξ1−ξ2)/2

z + 1/a
dz = −Iξ1<ξ2

(
−1

a

)(ξ1−ξ2)/2

.

because of the change of orientation from moving the contour Γ0,a to the contour
Γ−1/a . Thus,

T (0)
n,m(ξ, η1; η2, ξ2) = −Iη1<η2

1 + a2

2π i

∫
Γ0,a

(1 + az)(η1−η2)/2−1

(z − a)(η1−η2)/2+1
z(ξ1−ξ2)/2dz

−Iξ1<ξ2Iη1=η2(−a)(ξ2−ξ1)/2. (7.5)

If ξ1 ≥ ξ2 and η1 < η2 the integral in (7.5) is equal to 0 since the integrand is analytic
inside Γ0,a . Thus, the first term in (7.5) equals
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−Iη1<η2Iξ1<ξ2

1 + a2

2π i

∫
Γ0,a

(1 + az)(η1−η2)/2−1

(z − a)(η1−η2)/2+1
z(ξ1−ξ2)/2dz

= −(1 − Iη1>η2 − Iη1=η2)Iξ1<ξ2

1 + a2

2π i

∫
Γ0,a

(1 + az)(η1−η2)/2−1

(z − a)(η1−η2)/2+1
z(ξ1−ξ2)/2dz.

The last integral is equal to zero if η1 > η2 and hence the last expression equals

−Iη1=η2Iξ1<ξ2

1 + a2

2π i

∫
Γ−1/a

z(ξ1−ξ2)/2

(1 + az)(z − a)
dz

−Iξ1<ξ2

1 + a2

2π i

∫
Γ0,a

(1 + az)(η1−η2)/2−1

(z − a)(η1−η2)/2+1
z(ξ1−ξ2)/2dz.

The first term in this expression equals

Iη1=η2Iξ1<ξ2

(
−1

a

)(ξ1−ξ2)/2

so combining this result with (7.5) we find

T (0)
n,m(ξ1, η1; ξ2, η2)

= −Iξ1<ξ2

1 + a2

2π i

∫
Γ0,a

(1 + az)(η1−η2)/2−1

(z − a)(η1−η2)/2+1
z(ξ1−ξ2)/2. (7.6)

Next, using (2.5) and inserting it into (7.2) we get

T (1)
n,m(ξ1, η1; ξ2, η2)

= 1 + a2

(2π i)2

∫
Γ0,a

dv

∫
Γ0,a,v

dv

v − u

vn−ξ2/2

un−ξ1/2

(1 + au)(η1−1)/2(u − a)n−(η1+1)/2

(1 + av)(η2+1)/2(v − a)n−(η2−1)/2
(7.7)

after a short computation. Finally, by (7.2) and (2.5) we see that

T (2)
n,m(ξ1, η1; ξ2, η2)

= 〈(I − K )−1
2m+1(a−(η1−ξ1+M)/2,2s+1 + aa−(η1−ξ1+M−2)/2,2s−1)(k),

b−(η2−ξ2+M)/2,2r (k)〉≥2m+1(−1)(η2−ξ2+M)/2−(η1−ξ1+M−2)/2.

Now, using (2.5) a computation gives

(−1)−(η1−ξ1+M−2)/2 (a−(η1−ξ1+M)/2,2s+1(k) + aa−(η1−ξ1+M−2)/2,2s−1(k)
)

= (−1)k(1 + a2)

(2π i)2

∫
Γ0,a

du
∫

Γ0,a,u

dv

u − v

v(ξ1−η1−1)/2

uk+1
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× (1 + av)(η1−1)/2(1 − a/v)n−(η1+1)/2

(1 + av)n(v − a)n+1

= −(1 + a2)Aξ1,η1(k). (7.8)

Note that by moving the v-contour in (7.8) inside the u-contour we get the expression
in (2.2). Similarly, by (2.5),

b−(η2−ξ2+M)/2,2r (k)(−1)(η2−ξ2+M)/2

= (−1)k

(2π i)2

∫
Γ0,a

du
∫

Γ0,a,u

dv

v − u

vk

u(ξ2−η2+1)/2

(1 + av)n(w − a)n+1

(1 + av)(η2+1)/2(1 − a/v)n−(η2−1)/2

= Bξ2,η2(k)

Again by moving the v-contour inside the u-contour we get the expression in (2.2).
Thus,

T (2)
n,m(ξ1, η1; ξ2, η2) = −

〈
((I − K )−1

2m+1Aξ1,η1)(k), Bξ2,η2(k)
〉
≥2m+1

(1 + a2). (7.9)

If we use (7.6), (7.7) and (7.9) we obtain (7.3) which is what we wanted to prove.
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